
Context free languages

Syntatic parsers and parse
trees E!

*!E! E!
E!(!)!

E + E !
id!

id!

id!

Context Free Grammars
•  The CF grammar production rules have the following structure

X → α being X ∈ N and α ∈ (T ∪ N)*

▫  They are “context free” because the replacement of X is independent on
the context where it appears. It is always possibile to rewrite X with α

βXγ ⇒ βαγ ∀ β,γ ∈ (T ∪ N)*

▫  They allow the definition of quite expressive languages as programming
languages, arithmetic expressions and… regular expressions

Language processing
technologies

Marco Maggini

2

G

CF Grammar– arithmetic expressions

▫  The grammar defines recursively the structure of arithmetic expressions
▫  The terminal symbol “number” corresponds to a set of strings that can be

defined by a RE
▫  Starting from the symbol E, the grammar can generate all the legal

arithmetic expressions

Language processing
technologies

Marco Maggini

3

E → “number”

E → (E)

E →!E +!E!
E →!E –!E!
E → E *!E!
E → E /!E!

T = {“number”,(,),+,-,*,/}

N = {E}

CF Grammars- example

•  In general it is complex to describe the language defined by a
grammar in a compact way
▫  Given the choice of the start symbol, the language L(G) in the example

defines the following sets of strings
  S ⇒ w such that w has an equal number of a and b
  A ⇒ w such that w has a number of a 1 unity greater that that of b
  B ⇒ w such that w has a number of b 1 unity greater that that of a

▫  The proof is by induction

Language processing
technologies

Marco Maggini

4

S → aB A →!bAA!
S → bA B →!b

A →!a B →bS!
A →aS B →aBB!

T = {a,b}

N = {S,A,B}

*
*
*

CF Grammars– example: proof
•  For |w| = 1 the only derivations are
▫  A ⇒ a and B ⇒ b

•  If we suppose the hypothesis is true for |w|=k-1
▫  S ⇒ w can be obtained from

  S → aB where aB = a w1 being |w1| = k-1 and B ⇒ w1.
By induction w1 has 1 b more and hence w has the same number of a and b

  S → bA where bA = b w1 with |w1| = k-1 and A ⇒ w1.
By induction w1 has 1 a more and hence w has the same number of a and b

▫  A ⇒ w can be obtained from
  A → aS where aS = a w1 with |w1| = k-1 and S ⇒ w1.

By induction w1 has the same number of a and b and hence w has 1 a more
  A → bAA where bAA = b w1w2 with |w1| < k-1 |w2| < k-1 and A ⇒ w1, A ⇒ w2.

By induction w1, w2 have 1 a more than b and hence there is 1 a more in w
▫  B ⇒ w the sketch of the proof is similar

Language processing
technologies

Marco Maggini

5

* *

*

*

Parse trees
•  The derivation of any string in the language generated by a CF

grammar can be represented by a tree structure

Language processing
technologies

Marco Maggini

6

E → id

E → (E)

E →!E +!E!
E → E –!E!
E → E *!E!
E → E /!E!

(id+id)*id!

 E!

 E! E!

 E!

 E! E!

(!)!

*!

+!

id! id!

id!

Parse tree - definition
•  Nodes in a parse tree are labeled with terminal or non terminal

symbols
▫  Terminal symbols are in the leaves
▫  Non terminal symbols are in the internal nodes
▫  The root node corresponds to the non terminal start symbol

•  Each internal node corresponds exactly to one production rule
▫  The parent node is the non terminal symbol that is expanded
▫  The child nodes correspond to the terminal and non terminal symbols in

the right side of the production rule. The children are ordered as the
corresponding symbols in the production string

•  The parse structure is a tree since the production rules have the
structure N→ α that characterizes the CF grammars
▫  The parsed string can be read by a pre-ordered traversal of the tree that

outputs only the terminal symbols

Language processing
technologies

Marco Maggini

7

Parse tree and derivations
•  A parse tree can be interpreted as a representation of a sequence of

derivations α1⇒α2⇒…. ⇒αn where α1= A ∈ N
▫  For each string αi the derivation that produces αi+1 corresponds to the

activation of a production rule and, hence, to the expansion of a sub-tree
for and non terminal symbol in αi

Language processing
technologies

Marco Maggini

8

A

X1 X2 Xj Xk αk-1

tree
Xj →!β!

β=Y1Y2…Yr!

production!rule!
exploited!to!
derive!αk!

A

X1 X2 Xj Xk

αk

tree

Y1 Y2 Yr

Parse tree - example

•  The resulting parse tree shows which production rules were
exploited to obtain the derivation α1⇒ αn but not the order in which
they are activated

Language processing
technologies

Marco Maggini

9

*

E ⇒ E * E ⇒ (E) * E ⇒ (E + E) * E ⇒ (id + E) * E ⇒ (id + E)* id ⇒ (id + id)*id !

E! E!
*!E! E!

E!
*!E! E!

E!(!)!

E!
*!E! E!

E!(!)!
E + E !

E!
*!E! E!

E!(!)!
E + E !
id!

E!
*!E! E!

E!(!)!
E + E !
id!

id!

E!
*!E! E!

E!(!)!
E + E !
id!

id!

id!

Ambiguous grammars
•  A grammar is ambiguous if it is possible to build more than one

parse tree to describe the derivation process for the same string in
the language

Language processing
technologies

Marco Maggini

10

B → (B)

B →!B B!
B → ε!

B!
B! B!

B! B!
B! B!(! (!

(!)!
)!)!

B!

ε!ε!
ε!

generation of ()()()!

B → (B) B

B → ε!

B!
B! B!

)!
B! B!
B! B!(! (!)!

ε!ε!

(!)!B!
ε!

B!

B!(!)!B!
ε! (!)!B!

ε!
B!

(!)!B!
ε!

B!
ε!

ambiguous grammar! non ambiguous grammar!

Ambiguous Grammars – problems

•  In general it is complex to prove if a given grammar is ambiguous
•  The ambiguity can cause problems in some cases when the parse

tree is used to give a semantic interpretation to the input string

Language processing
technologies

Marco Maggini

11

E → id

E → (E)

E →!E +!E!
E → E *!E!
E → - E!

id+id*id!

E ⇒ E * E ⇒ E + E * E ⇒ id + E * E ⇒ id + id * E ⇒ id + id * id!

E ⇒ E + E ⇒ E + E * E ⇒ id + E * E ⇒ id + id * E ⇒ id + id * id!

Ambiguous Grammars – expressions 1

•  The grammar does not model the operator
▫  When using the parse tree on the right the evaluation of the expression

would generate an incorrect result (the sum is evaluated first)
▫  The problem can be solved with a more precise model

  The grammar should use a different model for the two operators * and +
  More syntactic categories (non terminal symbols) are exploited to yield the

correct grouping of the expression parts (terms and factors)

Language processing
technologies

Marco Maggini

12

 E!

 E! E!

 E! E!

+!
*!

id! id!

id!

 E!

 E! E!

 E! E!

*!

+!

id! id!

id!

KO!OK!

Ambiguous Grammars – expressions 2

•  Three syntactic categories are used
▫  F – factor: it is a single operand or an expression between ()
▫  T – terms: it is a product/quotient of factors
▫  E – expression: it is the sum/subtraction of terms

•  The production rules such as E→!E!+!T!cause!a!grouping!of!the!terms!
from!left!to!right!!(f.i.!1+2+3!→!(1+2)+3!)!

Language processing
technologies

Marco Maggini

13

E → E + T | E – T | T

T → T * F | T / F | F

F → (E) | id

Ambiguous Grammars - expressions

Language processing
technologies

Marco Maggini

14

id+id*id!

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ id + T ⇒ id + T * F ⇒ id + F * F ⇒ id + id * F ⇒ id + id * id!

E → E + T | E – T | T

T → T * F | T / F | F

F → (E) | id

 E!

 E! T!

 T! F!

+!
*!

id!

id!

id!

 F! F!

 T!

OK!

derivation with left rewriting!

Ambiguity – if… then… else

•  The grammar is ambiguous because the string “if E1 then if E2 then
S1 else S2” has two valid parse trees

Language processing
technologies

Marco Maggini

15

<stmt> → if <expr> then <stmt>

<stmt> → if <expr> then <stmt> else <stmt>

<stmt> → “instruction” ….

<stmt>

if <expr> then <stmt>

if <expr> then <stmt> else <stmt>
E1

E2 S1 S2

<stmt>

if <expr> then <stmt>

if <expr> then <stmt>

else <stmt>

E1

E2 S1

S2

Ambiguity – non ambiguous “if.. then.. else”
•  The ambiguity is due to the fact that the grammar does not allow a

clear association between the “else” and the “if” in the string
▫  The common used rule is that the “else” is attached to the closest “if”

Language processing
technologies

Marco Maggini

16

<stmt> → <stmt_c> | <stmt_u>

<stmt_c> → if <expr> then <stmt_c> else <stmt_c>

<stmt_c> → “instruction” ….

<stmt_u>→ if <expr> then <stmt>

<stmt_u>→ if <expr> then <stmt_c> else <stmt_u>

between “then-else” we can find only
complete “if-then-else” expressions!

<stmt_u>

<stmt>

if <expr> then <stmt>

if <expr> then <stmt_c> else

E1

E2 S1 S2

<stmt_u>

<stmt_u>

Equivalent productions
•  Some productions can be rewritten in order to obtain an equivalent

grammar (generating the same language) whose production rules
follow specific patterns
▫  Removal of left recursion

A grammar is left recursive if there exists a non terminal symbol A for
which there exists a derivation A ⇒ Aα being α (T ∪ N)*

Language processing
technologies

Marco Maggini

17

*

+

A → A α

A →!β
Simple production

rule
A → β!A’

A’ →!α A’ | ε

It generates the
strings

A → β!αn

Left recursion
•  The left recursion in production rules can be easily removed even in

the most general case

•  There exists an algorithm to remove the left recursion for derivation
in one ore more steps
▫  The removal of left recursion simplifies the implementation of left-to-

right parsers (parser that read the input string from left to right)
▫  The right recursion implements an expansion of strings from left to right

Language processing
technologies

Marco Maggini

18

A → A α1 | Aα2 | … | Aαm

A →!β1!|!β2!|!……!|!βn
A → β1!A’ | β2!A’ | …. | βn!A’

A’ →!α1 A’ | α2 A’ | …. | αm A’ | ε

Left recursion- example
•  Removal of the left recursion in the grammar for the arithmetic

expression

Language processing
technologies

Marco Maggini

19

E → E + T | T

T →!T * F | F

F →!!(E) | id

E → TE’

E’ →!+ TE’ | ε

T →!FT’

T’ →!* FT’ | ε

F →!!(E) | id

α = +T β!= T

α = *F β!= F

Left factorization
•  Left factorization can be used to rewrite the production rules

obtaining an equivalent grammar

▫  It is assumed that β1, β2, … ,βn do not share a same prefix
▫  When considering a left-to-right parsing, the left factorization allows the

decision of the expansion of α postponing the choice of the expansion of
one out of β1, β2, … ,βn to the next step

Language processing
technologies

Marco Maggini

20

A → α β1 | α β2!| … | α βn

A → α!A’

A’ →!β1 | β2!| … | βn

Top-down parsing
•  The top-down parsing is an algorithm that tries to build the parse

tree starting form the root, adding nodes in pre-order
•  The top-down parsing
▫  In general there is the need of backtracking –when there are more

choices for the production rule to expand, the first one is tried and the
others are tried only when this choice leads to a failure

▫  The grammar defines a set of mutually recursive functions, each
corresponding to one of the syntactic categories (non terminal symbols)

▫  The call of one function corresponds to the expansion of a given
production rule (expansion of the corresponding non terminal symbol)

▫  The function for the start symbol S reads an input strings and returns the
pointer to the root node of the generated parse tree (a null pointer if the
input string does not belong to the language and a parse error is
generated)

Language processing
technologies

Marco Maggini

21

Top-down parsing - example

•  A left recursive grammar can produce an infinite number of
expansions in a recursive top-down parser (the same symbol is
expanded at each step)

Language processing
technologies

Marco Maggini

22

S → cAd S()

A → ab | a A()

 S!

 c! d!A!

S()
w = cad

cad

 S!

 c! d!

 b!

A!

 a!

A()

cad

 S!

 c! d!A!

S()

cad

 S!

 c! d!A!

 a!

A()

cad

backtracking

Top-down parsing – parsing process 1
•  A cursor is used to track the next terminal symbol in the input string

that is to be generated in the parse tree
▫  This terminal symbol allow us to restrict the set of production rules han

can be activated to expand a non terminal symbol in the partial tree
•  The tree nodes are expanded from left to right
▫  a terminal symbol satisfies the goal if it matches the next symbol in the

input string
▫  a non terminal symbol satisfies the goal if it is satisfied by the call of the

corresponding recursive function

Language processing
technologies

Marco Maggini

23

Input string x1x2…..xn$

Input cursor
(lookahead symbol)

Top-down parsing – parsing process 2
•  When a production rule is expanded (the corresponding recursive

function is called) and a terminal symbol is generated, the operation
is successful if the generated symbol matches the terminal symbol
pointed by the input cursor
▫  Yes – the cursor moves to the next position and the parsing continues
▫  No – the current solution fails and the next hypothesis for the previous

goal is generated (backtracking)

•  If the expansion adds a non terminal symbols T, the corresponding
recursive function is called
▫  the function generates the parse sub-tree rooted at the node T

Language processing
technologies

Marco Maggini

24

Top-down parsing- example

Language processing
technologies

Marco Maggini

25

B → (B) B | ε

Node *B(int *lh, char *s) {
 Node *b1,*b2;

 if(s[*lh]==‘(‘) {
 (*lh)++; b1 = B(lh,s);

 if((s[*lh]==‘)‘)&&(b1!=NULL)){
 (*lh)++; b2 = B(lh,s);
 if(b2==NULL) {

 freeTree(b1); return(NULL);
 } else

 return tree4(‘B‘,tree0(‘(‘),b1,tree0(‘)’),b2);
 } else {
 freeTree(b1); return NULL;

 }
 } else

 return tree1(‘B’,tree0(‘e’));
}

input cursor

input string

 B!

 (!)!
 b1! b2!

 B!

 ε!

Lookahead parsers
•  The left recursion is removed
•  The production rules are left factorized
▫  For a subset of grammar a lookahead parser can be constructed such that

the parsing procedure does not require backtracking
▫  The lookahead terminal symbol always allows the selection of only one

production rule to be expanded

Language processing
technologies

Marco Maggini

26

a A A→α1|α2|….|αn
input

symbol
non terminal

symbol to
expand

production rules
involving A

Lookahead parsing
•  State diagrams that represent the sequences in the right side of the

production rules can be exploited to determine the production rule
to be applied
▫  The state transitions are triggered by a terminal symbol (a symbol is read

from the input and the cursor move ahead) or by a non terminal symbol
(the corresponding expansion is activated)

Language processing
technologies

Marco Maggini

27

E → TE’

E’ →!+ TE’ | ε

T →!FT’

T’ →!* FT’ | ε

F →!!(E) | id

7 8 9 F T’ T

E’ + 3 4 5 T E’ 6 ε

0 1 2 T E’ E

*
10 11 12

F T’
13

ε
T’

(14 15 16 E) 17
id

F

Table based parsing
•  A stack is directly used to implement the recursive calls

Language processing
technologies

Marco Maggini

28

a + b $

X

Y

Z

$

Parse table

parse tree

stack

grammar
symbols

T ∪ N

input string

Two-dimensional table

M[A,s]
non terminal terminal or $

Table based parsing - procedure
•  Initially the stack contains the start symbol S
•  The control selects the action to be executed using the symbol at the

top of the stack (X) and the current input terminal symbol (a)
▫  If X=a=$ the parser halts with success
▫  If X=a≠$ the parser pops X from the stack and moves ahead the input

cursor by 1 position (lookahead symbol match)
▫  X is a non terminal symbol – the entry M[X,a] is checked

  If it corresponds to a production rule, the elements in its right side are pushed
into the stack
X →!UVW push(W); push(V); push(U)

  Otherwise a parse error is issued and the parser halts
▫  If X≠a and X is a terminal symbol, then a parse error is generated

Language processing
technologies

Marco Maggini

29

Table based parsing- example

Language processing
technologies

Marco Maggini

30

E → TE’

E’ →!+ TE’ | ε

T →!FT’

T’ →!* FT’ | ε

F →!!(E) | id

id + * () $

E TE’ TE’
E’ +TE’ ε ε
T FT’ FT’
T’ ε *FT’ ε ε

F id (E)

stack input output

$E
$E’T
$E’T’F
$E’T’id
$E’T’
$E’
$E’T+
$E’T
$E’T’F
$E’T’id
$E’T’
$E’T’F*
$E’T’F
$E’T’id
$E’T’
$E’
$

id+id*id$
id+id*id$
id+id*id$
id+id*id$

+id*id$
+id*id$
+id*id$

id*id$
id*id$
id*id$

*id$
*id$
id$
id$

$
$
$

E →!TE’
T →!FT’
F →!id

T’ →!ε
E’ →!+TE’

T →!FT’
F →!id

T’ →!*FT’

F →!id

T’ →!ε
E’ →!ε

Table based parsing– table generation 1
•  We consider the following two functions
▫  FIRST(α) is the set of the terminal symbols that can start a string

generated from α ∈ (T ∪ N)*
▫  FOLLOW(A) is the set of the terminal symbols that can appear at the

right just afterthe symbol A ∈ N in a string derived from S (there exists a
derivation S⇒αAaβ being a ∈ T)

•  Computation of FIRST(x) x ∈ T ∪ N
▫  if x ∈ T then FIRST(x) = {x}
▫  if x ∈ N and there is the production rule x→ε then ε ∈ FIRST(x)
▫  if x ∈ N and there is the production rule x→Y1Y2…Yk then

  a ∈ FIRST(x) if a ∈ FIRST(Yi) and ε ∈ FIRST(Yj) j=1,..,i-1 (Y1…Yi-1⇒ε)
  ε ∈ FIRST(x) if ε ∈ FIRST(Yj) j=1,..,k
Basically the elements of FIRST(Yi) are added to FIRST(x) until a symbol Yi is

found such that ε ∉ FIRST(Yi)

Language processing
technologies

Marco Maggini

31

Table based parsing– table generation 2
•  Computation of FIRST(α) α ∈ (T ∪ N)* with α = Y1Y2…Yk
▫  F = FIRST(Y1)
▫  for(i=1; i<k && ε ∉ FIRST(Yi);i++)

  F = F ∪ FIRST(Yi+1)

•  Computation of FOLLOW(A)
▫  $ ∈ FOLLOW(S)
▫  If there is the production rule B→αAβ all the symbols in FIRST(β) except
ε are in FOLLOW(A)

▫  If there is the production rule B→αA or B→αAβ and FIRST(β) contains ε
then all the symbols in FOLLOW(A) are also in FOLLOW(B)

Language processing
technologies

Marco Maggini

32

Table based parsing– example FIRST/FOLLOW

Language processing
technologies

Marco Maggini

33

E → TE’

E’ →!+ TE’ | ε

T →!FT’

T’ →!* FT’ | ε

F →!!(E) | id

FIRST(E) = {(,id}
FIRST(T) = {(,id}
FIRST(F) = {(,id}
FIRST(E’) = {+,ε}
FIRST(T’) = {*,ε}

FOLLOW(E) = {),$}
FOLLOW(T) = {),+,$}
FOLLOW(F) = {),*,+,$}
FOLLOW(E’) = {),$}
FOLLOW(T’) = {),+,$}

Table based parsing– table generation

•  The entries in the parse table are defined by
▫  If there is the production rule A →α then for any symbol a in FIRST(α)

M[A,a] = {A →α}
In fact, if the parse is in the state A and a is read from the input, the
production rule A → α is to be expanded since it guarantees the
generation of the terminal symbol a

▫  If ε ∈ FIRST(α) then M[A,b] = {A →α} forn any symbol b in
FOLLOW(A)
It implements the fact that if α⇒ε then the symbol a must be generated
by some production rule where A appears followed by another expression
that can generate the terminal symbol a

Language processing
technologies

Marco Maggini

34

Table based parsing– ambiguous grammars
•  The procedure for the generation of the parse table can produce

entries of the matrix M that contain more than one alternative

Language processing
technologies

Marco Maggini

35

S → i E t S S’ | a

S’ →!eS | ε

E →!b

grammar for

if-then-else

FIRST(S) = {i,a}
FIRST(S’) = {e, ε}
FIRST(E) = {b}

FOLLOW(S) = {e,$}
FOLLOW(S’) = {e,$}
FOLLOW(E) = {t}

a b e i t $

S a iEtSS’
S’ ε

eS
ε

E b

LL(1) grammars
•  A grammar that does not have multiple defined entries in the parse

table is a LL(1) grammar
▫  Left-to-right in the input scanning
▫  Leftmost – the leftmost symbol is always expanded
▫  1 lookahead symbol is exploited

•  The LL(1) grammars are a subset of the CF grammars
▫  The left recursion is to be removed
▫  The grammars are to be left factorized
▫  The resulting grammar may not be a LL(1) grammar

Language processing
technologies

Marco Maggini

36

Bottom-up parsing
•  The parse tree is generated starting from the leaves up to the root
▫  The input string is reduced to the start non terminal symbol S
▫  At each step a substring that matches the right side of a production rule

is replaced by the non terminal symbol in the left side
▫  The corresponding node in the parsing trees is generate by connecting

the child nodes to their parent node

Language processing
technologies

Marco Maggini

37

S → aABe

A →!Abc | b

B →!d

abbcde

aAbcde

aAde

aABe

S

substring on which
we can apply

A →!b

B →!d

Bottom-up parsing– selecting reductions

•  In the example, the reductions are selected considering a derivation
of the string in which the rightmost non terminal symbol is
rewritten
▫  The bottom-up approach reduces the string from left to right

•  How can we select the string to be reduced?
▫  We can select the leftmost substring that matches the right side of a

production rule
▫  It is not guaranteed that the whole string is reduced to the start symbol S

for a given selection (backtracking is needed in general)

Language processing
technologies

Marco Maggini

38

S → aABe

A →!Abc | b

B →!d

S ⇒ aABe ⇒ aAde ⇒ aAbcde ⇒ abbcde!

Bottom-up parsing– selecting reductions
•  In the example, the choice of reducing the leftmost string at the first

step leads to a successful parsing
▫  In general this may not happen….
▫  If we make the wrong selection we find an intermediate result in which

there are no substrings that match the right side of one production rule

Language processing
technologies

Marco Maggini

39

S → aABe

A →!Abc | b

B →!d

abbcde

aAbcde

if at the second step we
select A →!b

 aAAcde

 aAAcBe

is no more reducible….

Handle substrings
•  A handle substring
▫  corresponds to the right side of a production rule A→β
▫  A can be replaced in the current string γ obtaining a step in the right

derivation of γ from S S ⇒ αAw ⇒ αβw (w contains only terminal
symbols since the derivation is rightmost)

▫  If the grammar is ambiguous, the same substring may belong to more
than one handle

Language processing
technologies

Marco Maggini

40

* rm

S

w

A

β

α

handle

the reduction of β into A
corresponds to the
removal of all the children
of node A from the tree

Reduction process
•  The reduction process is aimed at the progressive substitution of the

handle substrings with the corresponding non terminal symbol
▫  Starting from the input string containing only terminal symbols

S = γ0 ⇒ γ1⇒ γ2⇒ ….. ⇒ γn-1⇒ γn = w

▫  The handle βn is substituted in γn exploiting the production rule An→βn
such that γn-1 = αn-1Awn-1

▫  the process is repeated until the start symbol S is obtained
•  This process has two correlated tasks to be solved
▫  How to detect the substring to be reduced
▫  How to select the correct production rule for the reduction

Language processing
technologies

Marco Maggini

41

rm rm rm rm rm

Bottom-up parsers with stack
•  A stack is used to store the intermediate results (the tree frontier)
▫  the parser pushes symbols into the stack starting from the input string w

until a handle β is found at the top of the stack
▫  the parser reduces the handle β to the non terminal symbol A associated

to the handle
▫  the parser halts with success when the stack contains only the symbol S

and the input string is empty
•  The action that the parser can execute are
▫  SHIFT – the next symbol in w is pushed into the stack
▫  REDUCE – a handle substring is matched at the top of the stack and it is

replaced by the corresponding non terminal symbol
▫  ACCEPT – successful halting of the parse
▫  ERRORE – the parser outputs a syntax error

Language processing
technologies

Marco Maggini

42

Bottom-up parsing- example

Language processing
technologies

Marco Maggini

43

stack input output

$
$id
$E
$E+
$E+id
$E+E
$E+E*
$E+E*id
$E+E*E
$E+E
$E

id+id*i$
+id*id$
+id*id$

id*id$
*id$
*id$
id$

$
$
$
$

SHIFT
REDUCE E →!id
SHIFT
SHIFT
REDUCE E →!id
SHIFT (*)
SHIFT
REDUCE E →!id
REDUCE E →!E*E
REDUCE E →!E+E
ACCEPT

E → id

E → (E)

E →!E +!E!
E → E *!E!

id+id*id!

•  The grammar is ambiguous and there is another valid reduction
▫  There is a SHIFT/REDUCE conflict in (*) that was resolved with SHIFT
▫  Also REDUCE E → E+E could have been selected!

Bottom-up parsers - conflicts
•  Stack-based bottom-up parsing not requiring backtracking cannot

be realized for any CF grammar
▫  Given the stack contents and the next input symbol, it fails when

  There is a SHIFT/REDUCE conflict
  It is not possible to select the correct reduction in a set of valid reductions

•  The actions in a stack-based bottom-up parser can be univocally
determined only if the grammar has specific properties
▫  Parser for operator-precedence grammars

  They are a peculiar subset of grammars where the production rules such as
A→ε are not allowed and for any production rule A→β the string β does not
contain two adjacent non terminal symbols (they are always separated by an
“operator”). F.i. the arithmetic expressions

▫  LR parsers (Left-to-right Right-most-derivation)

Language processing
technologies

Marco Maggini

44

LR(k) parsers

Language processing
technologies

Marco Maggini

45

LR(k) parsers- structure

Language processing
technologies

Marco Maggini

46

a1 … … ai .. an $

Sm

Xm

Sm-1

.. ACTION

parse tree

stack

state - symbol

input string

parse tables

ACTION[S,a]

GOTO[S,A]
GOTO

a

$

..

Xm-1

ToS

LR parsers – processing scheme 1
•  The stack stores a string of pairs symbol-state

S0X1S1X2S2….XmSm

▫  each state summarizes the information contained in the stack required
to recognize a handle substring

▫  The parser action is determined by the state at the top of the stack and
the current input symbol (Tos,a)

▫  In the implementation the language symbols Xi∈ (T ∪ N) are not strictly
needed (the state already stores the partial processing of their sequence)

▫  The parser configuration is given by the stack contents and the
remaining part of the input string

S0X1S1X2S2….XmSmaiai+1…..an$

Language processing
technologies

Marco Maggini

47

LR parsers – processing scheme 2
•  The configuration represents a right-derived substring

X1X2….Xmaiai+1…..an$

▫  The control of the LR parser selects the action to be performed given the
state Sm at the top of the stack and the current input symbol ai

1.  ACTION[Sm,ai]=SHIFT S (PUSH ai, PUSH S)
The new configuration is

S0X1S1X2S2….XmSmaiS ai+1…..an$

Language processing
technologies

Marco Maggini

48

already expanded

to be expanded

ToS

a

LR parsers – processing scheme 3

2. ACTION[Sm,ai]=REDUCE A → β
A reduction is applied causing the new configuration

S0X1S1X2S2….Xm-rSm-rAS ai…..an$

 where S = GOTO[Sm-r,A] and r=|β| β=Xm-r+1….Xm

3. ACTION[Sm,ai]=ACCEPT
The parsing is halted with success

4. ACTION[Sm,ai]=ERROR
An error is detected and the error handling procedure is executed

Language processing
technologies

Marco Maggini

49

ToS

a

LR parsing – example 1

Language processing
technologies

Marco Maggini

50

1 E → E+T

2 E →!T

3 T →!T*F

4 T →!F

5 F →!!(E)

6 F →!id

state id + * () $ E T F

0
1
2
3
4
5
6
7
8
9

10
11

s5

s5

s5
s5

s6
r2
r4

r6

s6
r1
r3
r5

s7
r4

r6

s7
r3
r5

s4

s4

s4
s4

r2
r4

r6

s11
r1
r3
r5

Ac
r2
r4

r6

r1
r3
r5

1

8

2

2

9

3

3

3
10

ACTION GOTO

s# = shift #new state

r# = reduce #production

LR parsing– example 2

Language processing
technologies

Marco Maggini

51

stack input ACTION reduction GOTO

0|
0|id|5|
0|F|3|
0|T|2|
0|T|2|*|7|
0|T|2|*|7|id|5|
0|T|2|*|7|F|10|
0|T|2|
0|E|1|
0|E|1|+|6|
0|E|1|+|6|id|5|
0|E|1|+|6|F|3|
0|E|1|+|6|T|9|
0|E|1|

id*id+id$
*id+id$
*id+id$
*id+id$
id+id$

+id$
+id$
+id$
+id$

id$
$
$
$
$

SHIFT 5
REDUCE 6
REDUCE 4
SHIFT 7
SHIFT 5
REDUCE 6
REDUCE 3
REDUCE 2
SHIFT 6
SHIFT 5
REDUCE 6
REDUCE 4
REDUCE 1
ACCEPT

F→id
T→F

F→id
T→T*F
E→T

F→id
T→F
E→E+T

G[0,F]=3
G[0,T]=2

G[7,F]=10
G[0,T]=2
G[0,E]=1

G[6,F]=3
G[6,T]=9
G[0,E]=1

LR grammars- definition
•  A LR grammar us a grammar for which it is possible to univocally

fill the ACTION and GOTO tables for an LR parser

▫  There are CF grammars that are not LR
▫  A grammar is LR if the SHIFT/REDUCE parser is able to recognize a

handle substring when they appear at the top of the stack (only the state
is needed to perform this check)
  The recognizer for a handle can be implemented by a finite state automaton

that scans the symbols in the stack and outputs the correct right side of the
production rule as soon as it is detected

  This mechanism is realized by the GOTO table
  The state at the top of the stack is the current state of this automaton after the

processing of the symbols from the bottom up to the top of the stack

Language processing
technologies

Marco Maggini

52

LR grammars - properties
•  The LR(k) grammars are more general than LL(k) grammars
▫  LR(k) grammars require to recognize the right side of a production rule

A→ β (the handle) given k lookahead symbols after having seen all the
symbols that derive from β

▫  LL(k) grammars require to recognize a production rule given the first k
symbols of what can derive from its right side

•  How can we fill the parsing tables?
▫  We consider the case of Simple LR (SLR) grammars that is a proper

subset of LR grammars

Language processing
technologies

Marco Maggini

53

SLR grammars
•  A element LR(0) of a grammar G is a production rule tagged with a

dot () in a given position in the right side

▫  An element is defined by a pair of indexes (#production,position)
▫  An element keeps track of how many symbols in the right side have been

already found up to a given step of the parsing procedure

•  The filling of the parse table begins with the construction of a finite
state automaton that recognizes the prefixes associated to the
production rules in a right derivation process

Language processing
technologies

Marco Maggini

54

#i A → xyz

A → xyz (i,0)
A → xyz (i,1)
A → xyz (i,2)
A → xyz (i,3)

SLR grammars– elements
•  the elements defined by each production rule can be seen a the

states of a finite state automaton

▫  A new start symbol S’ is added with the production rule S’ →S (it is the
reduction that causes the acceptance of the input string)

▫  We build the FSA recognizing the right sides of the production rules

Language processing
technologies

Marco Maggini

55

A→αxβ A→αxβ
x

A→αBβ B→γ
ε

the input x is accepted to
move one step forward in
the recognition of αxβ

the detection of B requires
to apply any possible
expansion of this non
terminal symbol

SLR grammars– example 1

Language processing
technologies

Marco Maggini

56

1 E’ → E

2-3 E →!E+T| T

4-5 T →!T*F | F

6-7 F →!!(E) | id

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

SLR grammars– example 2

Language processing
technologies

Marco Maggini

57

removal of ε-transitions

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7

I0={[E’→E],[E→T],
[E→E+T],[T→F],
[T→T*F],[F→id],
[F→(E)]}

F

SLR grammars – example 3

Language processing
technologies

Marco Maggini

58

E’→E

I0

E→T

E→E+T

T→F

T→T*F

F→id

E

T

id

(

I2

I0={[E’→E],[E→T],
[E→E+T],[T→F],
[T→T*F],[F→id],
[F→(E)]} F

I1={[E→E+T],[E’→E]}

I1

I2={[E→T],[T→T*F]}

I3

I3={[T→F]}

I4

I5={[F→id]}
I5

I4 is to be
determined with
the removal of
ε-transitions

there are no ε-transitions
from the states in I1,I2, I3, I5

SLR grammars– example 4

Language processing
technologies

Marco Maggini

59

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

removal of ε-transitions
for the state F→(E)

I4={[F→(E)],[E→E+T],
[E→T],[T→F],
[T→T*F],[F→id],
[F→(E)]}

SLR grammars– example 5

Language processing
technologies

Marco Maggini

60

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from

I1={[E→E+T],[E’→E]}

The transition with +
defines

I6={ [E→E+T],[T→F],
[T→T*F],[F→id],
[F→(E)]}

SLR grammars– example 6

Language processing
technologies

Marco Maggini

61

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from
I6={ [E→E+T],[T→F],

[T→T*F],[F→id],
[F→(E)]}

I4

I5

I3

The transition with
T defines

I9={ [E→E+T],[T→T*F]}

SLR grammars– example 7

Language processing
technologies

Marco Maggini

62

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from

I2={[E→T],[T→T*F]}

The transition with *
defines

I7={ [T→T*F],[F→id],
[F→(E)]}

SLR grammars– example 8

Language processing
technologies

Marco Maggini

63

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from

I4={[F→(E)],[E→E+T],
[E→T],[T→F],
[T→T*F],[F→id],
[F→(E)]}

I4

I2

I3

I8

I8 The transition with E
defines

I8={ [E→E+T],[F→(E)]}

I5

SLR grammars– example 9

Language processing
technologies

Marco Maggini

64

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from

I7={ [T→T*F],[F→id],
[F→(E)]}

I4

I5

I10

The transition with F
defines

I10={ [T→T*F]}

SLR grammars– example 10

Language processing
technologies

Marco Maggini

65

E’→E

E→E+T

E’→E

E→T

E→T

E→E+T E→E+T E→E+T

T→F

T→F

T→T*F

T→T*F

T→T*F

T→T*F

F→id

F→(E)

F→id

F→(E)

F→(E)

F→(E)

ε

ε

ε

ε

ε

ε
ε

ε

ε
E

E

E

T

ε

T

T

*

+

id

(

)

ε

ε

ε
ε

ε

ε

F

1

2

3

4

5

6

7 F

transitions from

I8={ [E→E+T],[F→(E)]}

I11

I6

The transition with)
defines

I11={ [F→(E)]}

SRL grammars– example 11

Language processing
technologies

Marco Maggini

66

I0={[E’→E],[E→T],[E→E+T],[T→F],[T→T*F],[F→id],[F→(E)]}

I1={[E→E+T],[E’→E]}

I2={[E→T],[T→T*F]}

I3={[T→F]}

I4={[F→(E)],[E→E+T],[E→T],[T→F],[T→T*F],[F→id],[F→(E)]}

I5={[F→id]}

I6={ [E→E+T],[T→F],[T→T*F],[F→id],[F→(E)]}

I7={ [T→T*F],[F→id],[F→(E)]}

I8={ [E→E+T],[F→(E)]}

I9={ [E→E+T],[T→T*F]}

I10={ [T→T*F]}

I11={ [F→(E)]}

SRL grammars– example 12

Language processing
technologies

Marco Maggini

67

state id + * () E T F

0 5 4 1 2 3

1 6

2 7

3

4 5 4 8 2 3

5

6 5 4 9 3

7 5 4 10

8 6 11

9 7

10

11

State transition table

Parsing tables– filling ACTION
•  Given the deterministic automaton that recognizes the prefixes of

the right sides of the production rules, it is possible to fill the
ACTION and GOTO parse tables
▫  The automaton states C={I0,I1,…,In} correspond to the states 0,1,..n in the

scanner
•  The actions for state i are defined as follows
▫  If [A→αaγ] ∈ Iiand there is the transition Ii→Ij for the input a∈T then

ACTION[i,a]=SHIFT j (the automaton enters a new state and the match
of the right side of a production rule is not yet completed)

▫  If [A→α] ∈ Ii then ACTION[i,a]=REDUCE A→α for any terminal
symbol a in FOLLOW(A)

▫  If [S’→S] ∈ Ii theb ACTION[i,$]=ACCEPT

Language processing
technologies

Marco Maggini

68

Parse tables– filling GOTO
•  The GOTO table is filled considering the transitions produced by

non terminal symbols for each state
▫  If there exists the transition Ii→Ij for input A∈N then GOTO[i,A]=j

•  The start state contains [S’→S]

•  The missing entries correspond to parse errors

•  The parse tables filled with this algorithm are said SLR(1)
▫  An SLR(1) grammar is a grammar that admits an SLR(1) parser

Language processing
technologies

Marco Maggini

69

Parse tables- example

Language processing
technologies

Marco Maggini

70

I0={[E’→E],
[E→T],
[E→E+T],
[T→F],
[T→T*F],
[F→id],
[F→(E)]}

I0

I1

I2

I3

I4

I5

E

(

id

F
T

ACTION[0,id] = SHIFT 4

ACTION[0,(] = SHIFT 5

GOTO[0,E] = 1

GOTO[0,T] = 2

GOTO[0,F] = 3

I1={[E→E+T],[E’→E]}

I1 I6
+

ACTION[1,$] = ACCEPT

ACTION[1,+] = SHIFT 6

I2={[E→T],[T→T*F]}

I2 I7
*

ACTION[2,*] = SHIFT 7

ACTION [2,$] = REDUCE E→T

ACTION [2,)] = REDUCE E→T

ACTION [2,+] = REDUCE E→T

FOLLOW(E)={$,+,)}

Non SLR(1) grammars
•  The filling of the parse tables for a SLR(1) parser fails when there is

a conflict in the definition of one of its entries
•  For LR languages more general than SLR(1) languages we can build
▫  Canonical LR tables
▫  LALR tables (LookAhead LR)

•  Problems arise when there is more than one valid reduction and we
need to avoid to apply incorrect reductions that would lead to a dead
end requiring a backtracking step
▫  A solution is to use a more informative state that explicitly memorizes

the symbols that can follow a handle α for which the reduction A → α can
be applied

Language processing
technologies

Marco Maggini

71

LR grammars
•  The elements of a LR(1) grammar are defined by the pairs

[A → αβ,a]

▫  The lookahead element a is used only for the elements with the structure
[A → α,a] where we need to consider the reduction only if the next
symbol is a

▫  In fact, it is not guaranteed that the reduction is valid for all the elements
in FOLLOW(A) as it is assumed in the construction of the SLR tables

•  A canonical LR parser had much more many states than SLR and
LALR parsers

•  The automatic generators of CF parsers yield LALR parsers

Language processing
technologies

Marco Maggini

72

